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Polylactide (PLA), conventionally synthesized through the ring- Scheme 1. Dimeric Phosphazene Base P»-t-Bu

opening polymerization (ROP) of lactide (LA), is one of the most . 'T“Ha ?HacH
important synthetic biocompatible and biodegradable polymers with Hsc\a \llu llﬂ/ ’

a wide range of biomedical, pharmaceutical, agricultural, and NR=N—R=N—tBu
packing applications.The mechanical, physical, aqd degradation H3CH30/'T‘ 'T‘\CHS
properties are closely related to the stereochemistry of PLA, so CHs  CHg

stereocontrol of PLA homopolymers or copolymers is of utmost
importance to achieve the desired features for applications. While  The ROP ofrac-LA with the same dilute reaction conditions
isotactic poly(-LA) (PLLA) and poly(o-LA) (PDLA) are typically using B-t-Bu catalyst at room temperature produced paig{LA)
crystalline with a melting temperaturd@,() around 18C°C, a 1:1 (PRLA) with M, of 13300 g/mol and PDI of 1.06 at 85%
mixture of enantiomerically pure PLLA and PDLA can form a conversion (Table 1, entry 3). The high catalytic activity gftP
stereocomplex with &, of 230°C 2 which will have a much higher Bu enables the ROP ofac-LA even at —75 °C. The final
working temperature. The synthesis of high melting stereocomplex conversion of monomer is higher since the ROP is exothermic.
PLA directly from inexpensive feedstoalac-LA (a 1:1 mixture PRLA with M, of 27 200 and PDI of 1.11 was obtained at over
of L-LA and p-LA) has been an important synthetic target with 99% conversion afte3 h (Table 1, entry 4).
two different strategies being exploited: enantiomorphic site-control ~ The microstructures of the prepared PRLAs at different temper-
(the chirality of the catalyst defines the stereochemistry of the atures were determined by the analysis of the methine region of
monomer insertiod)and chain-end control (the stereochemistry of the homonuclear decouplédl NMR spectra (Figure 1). The re-
the last inserted monomer defines the stereochemistry of the sonance peaks of the methine proton were assigned to the appro-
subsequent ring-opening stéP)Most of the reported stereoselec-  priate tetrads in accordance with the reported literatbigg. low
tive catalysts to date are single site catalysts with a metal center,temperature, the formation of isotactic sequences is favored as indi-
which may be bound in the polymer chains and limit their cated by the predominaiit tetrad, characteristic of isotacticity (
application in biomedical and pharmaceutical fieldsRecently, denotes isotactic ansldenotes syndiotactic). Three smaller reson-
we reported potent non-ionic monomeric phosphazene bases  ance peaks assignableisy sii, andiis tetrads have nearly identical
active catalysts for ROP of cyclic estérslerein, we present the intensities, and thsispeak is negligible, which suggests the PRLA
organocatalytic stereoselective ring-opening polymerizatioaof prepared at-75 °C has stereoblock architectures with long isotactic
LA at low temperature using the dimeric phosphazene bése-1- poly(S) segments and poly(R) segments in the main chRiara-
butyl-2,2,4,4,4-pentakis(dimethylaminox24A>-catenadi(phosp- ~ meterP;, which is the probability of forming a newdyad, deter-
hazene) (Rt-Bu, M*NpKgy+ 33.5, Scheme 1) as catalyst to produce mines the relative proportions of the tetrad sequences and therefore
highly isotactic PLA stereocomplex. provides a measure of the degree of stereoselectivity of a catalyst.

The catalytic activity of Rt-Bu for the ROP of LA was first  According to the Markovian statistic®; increases from 0.72 for
studied with enantiomerically pure-LA in toluene at room PRLA prepared at room temperature to 0.95 for PRLA prepared at
temperature using 1-pyrenebutanol as the initiator. With a monomer —75 °C. The high level of isotacticity was further confirmed with
to initiator to catalyst molar ratio of 100:1:1 (initial monomer the 13C NMR spectra at the methine region (Figure S3).
concentration [M] = 0.32 mol/L, targeted degree of polymerization Thermal analysis revealed that PRLA prepared-a6 °C is
(DP)= 100, Table 1, entry 1).-LA was quantitatively polymerized  crystalline due to the high degree of stereoregularity. The resultant
in 10 s. This remarkably high catalytic activity is comparable with polymer exhibited a glass transition temperattiig ¢f 62 °C and
those of the most active metalr nonmetal catalystsThe resulting a peakT, of 201°C (fusion enthalpyAHzs = 47 J/g) for the second
PLLA had a molecular weightMys) of 25800 g/mol with @ scan, which is considerably higher than that of PLLA with similar
polydispersity (PDE M,/M,) of 1.23 and showed high end-group degree of polymerization (DP)T§, = 163 °C) (Figure S4). The
fidelity (Figure S1). PLLAs with narrower PDI of 1.08 can be high melting temperature suggests the formation of stereocomplex
synthesized by reducing the starting concentration of monomer (O-Osmorphology due to the cocrystallization of the long isotactic PLLA
mol/L), initiator, and catalyst (Table 1, entry 2), increases  ang PDLA blocks. For PRLA prepared at room temperature, no
linearly with the conversion of monomer, which is a characteristic melting peak was observed in the second heating, commensurate
of living polymerization (Figure S2). However, since the equilibrium itk an amorphous polymer. The higheEt values of PRLA
monomer concentratiéhidoes not differ enough from the starting  gtereocomplexes (with DP around 100) obtained by the stereose-
concentration, the conversion is incomplete. lective polymerization ofac-PLA using organocatalystand metal

*1BM Almaden Research Center. complex catalysts*were 153.3 gnd 207C. P-t-Bu shows a better

*Qak Ridge National Laboratory. stereocontrol on ROP afc-lactide than all the other organocata-
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Table 1. ROP of rac-LA in Toluene Using 1 mol % of P,-t-Bu (to Monomer) as Catalyst

entry monomer [M]o (mollL) initiator Mlo/[llo temp (°C) time (min) conversion? (%) DP2 Mib€ (g mol~?) PDIbe P2
1 L-LA 0.32 PB 100 20 0.17 >99 98 25800 1.23 N/A
2 L-LA 0.08 PB 100 20 25 84 76 13000 1.09 N/A
3 rac-LA 0.08 PB 100 20 3 85 76 13300 1.08 0.72
4 rac-LA 0.08 PB 100 -75 180 >99 97 27200 1.11 0.95
5 rac-LA 0.08 PSoo—OH 100 —75 220 99 96 30700 1.10 0.92

aDetermined by*H NMR. P Determined by GPC in THF using a RI detectbbetermined by GPC in CHglusing a RI detector.

iii (Figure S9) presenting peaks only corresponding to lactide repeat

units (144 Da) further confirmed this statemént.
In conclusion, because of its high basicity, steric hindrance, and

high activity at low temperature, dimeric phosphazene bage P
Bu exhibits excellent stereocontrol for the ROP rat-lactide.

T =20°C, P.=0.72 Highly isotactic polymers with high melting point and high

' crystallinity were obtained due to the effective cocrystallization

between PLLA blocks and PDLA blocks. A chain-end control with

sii/iis iis/sii
sis

T=-75°C, P, =095 stereoerror mechanism is postulated to explain the formation of
) ) ) ) ) ) ) the microstructure. Further mechanistic study with molecular
526 524 522 520 518 516 514 modeling is still under investigation.
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